First results from a 4-channel charged fusion

W.U Boeglin and R. Valenzuela-Perez
Department of Physics, Florida International University ${ }^{\text {a }}$
D. Darrow
Princeton Plasma Physics Laboratory ${ }^{\text {b) }}$
The MAST team
CCFE

This work is supported by US Department of Energy contract numbers (a) DE-SC0001157 and (b) DE-ACO2-09CH11466

Content

- Introduction
- Principle of diagnostic
- 4-channel design and installation
- Data analysis
- First results
- Installation in NSTX-U
- Future: 16-channel instrument
- Summary

Introduction

- Determine the time dependent fusion rate profile
- Check of TRANSP simulations
- Study MHD instabilities: TAE, NTM, EPM, IRE
- Study effect of instabilities on fast ion redistribution and loss
- Probed ion distribution function weighted toward high energies, complements FIDA and ssNPA
- Expected to work well at high densities
- Cross check to total neutron rate measurements

Principle

Detect charged particles from:

$$
\begin{aligned}
& d+d \rightarrow p+{ }^{3} H \quad \begin{array}{c}
\substack{\mathrm{T}_{\mathrm{p}}=3.02 \mathrm{MeV} \\
\mathrm{~T}_{\mathrm{T}}=1.01 \mathrm{MeV}} \\
d+d \rightarrow n+{ }^{3} H e
\end{array} \begin{array}{c}
\mathrm{T}_{\mathrm{n}}=2.45 \mathrm{MeV} \\
\mathrm{~T}_{3 \mathrm{He}=}=0.82 \mathrm{MeV}
\end{array}
\end{aligned}
$$

dominated by neutral beam and plasma ion interactions

Advantage at NSTX and MAST:

- Proton/triton is not confined in the magnetic field of NSTX/MAST
- Proton/triton is quickly lost
- Trajectory similar to a view chord of neutral particle detection system
- observed particle rate is a measure of the integrated emissivity along the trajectory path

Proton measurements have been carried out previously:

- W.W.Heidbrink, J.D.Strachan, Rev. Sci. Instrum, 56, 501 (1985)
-J.D. Strachan, Rev. Sci. Instrum., 57, 1771 (1986)

Particle Types:

- Protons
- Highest energy ($3 \mathrm{MeV}, \mathrm{p}=75 \mathrm{MeV} / \mathrm{c}, \mathrm{q}=1$)
- Easy to detector with surface barrier detectors
- 100\% efficient
- Future: diamond detectors (less sensitive to radiation damage)
- Tritons:
- Same orbit as protons ($1 \mathrm{MeV}, \mathrm{p}=75 \mathrm{MeV} / \mathrm{c}, \mathrm{q}=1$)
- More sensitive to electrical noise
- Provide more statistics
- ${ }^{3} \mathrm{He}$:
- Lowest energy ($0.82 \mathrm{MeV}, \mathrm{p}=67.9 \mathrm{MeV} / \mathrm{c}, \mathrm{q}=2$)
- Different orbits than tritons and protons
- Provide additional orbit data

Surface Barrier Detectors

- Commercially available Ortec/Canberra
- Bakeable (up to 200 C)
- Can be operated in UHV
- Have been used previously
- Good energy resolution (1\%)

ULTRA and ULTRA-AS

Ion Implanted SIIIcon Charged Particle Detectors

- Ultra-thin entrance contact for optimum energy resolution
- High geometric efficiency due to close detector to can spacing
- Rugged and realiable
- Gold plated cans for contacts that last a lifetime
- Advanced surface passivation for total device stability

Detectors used : CU-014-050-100-S ULTRA by AMETEK/ORTEC

Original Prototype

detector-collimator unit

- Prototype: 2 detectors
- Flexible orientation around 3 axes
- Study signals and rates
- Optimize detector arrangement and location for full array of 8 detectors
- Location: Bay K
- Mounted on moveable probe shaft
- IN-position: $\mathrm{R}=1.7 \mathrm{~m}, \mathrm{Z}=0.286 \mathrm{~m}$

Could not be tested

MAST Design

Approx. location of probe arm

Acceptance: Poloidal

Radial Positions: +/- 3cm

Integration region
(not weighted by acceptance)

Acceptance: Toroidal View

${ }^{3} \mathrm{He}$ Orbits

${ }^{3} \mathrm{He}$ rate about 3-10 times higher than proton/triton rate

Proton Detector (PD)

PD Assembly

Cross-Sectional View

Particle trajectories

Collimator

SSB detector

BN heat shield

