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MeV Proton Emission Diagnostic Motivation 
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Mega Amp Spherical Tokamak  
Aspect Ratio: 0.85m/0.65m =1.31 

•  Proof of concept: advantage in size, cost, and 
energy resolution 
•  Successful prototype 3MeV proton detector at 
the Mega Amp Spherical Tokamak (MAST) 
•  Measure DD proton fusion rate profile 
•  Study MHD instability effects on proton rate 

[Original Image CCFE,MAST] 



Prior Work with DD Charged Fusion Products 
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•  Collimated silicon detectors 
surface barrier detectors for 
detecting ions - Strachan (1986) 
and Lo et.al. (1995) 
•  3MeV proton energy spectra in 
conventional tokamaks - Chrien 
et.al. (1983), Heidbrink et.al. 
(1985), and Bosch (1990)  
•  MAST fast ion diagnostics - 
Jones et.al. (2013), Cecconello, 
et. al. (2014) 
•  MAST neutron camera (NC) 
measures same profile using 
2.5MeV neutrons 

[Original Image Cecconello et al. (2012)]  
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DD Charged Fusion Product Emissions of Interest  
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•  Dominant signal from beam-plasma fusion events during 
Neutral Beam Injection (NBI) 
•  Potential application of proton detector (PD) to study 
beam ion confinement and heating profile 

• Primary 
•  D + D  P (3MeV) + T (1MeV) 
•  D + D  N (2.5MeV) + 3He (0.8MeV) 

•  Secondary 
•  D + T      N (14.1MeV) + 4He(3.5MeV) 
•  D + 3He   4He (3.6MeV) + P(14.7MeV) 



Poloidal and Toroidal Orbit Trajectories 
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Orbit bundles for central trajectories 
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Mechanical probe arm pushes PD towards plasma 
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[Original Images CCFE,MAST] 
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Compact Housing: 110mm diameter, 185mm length 
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Main housing: detector assembly components 
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Detector 

PEEK Insulation 

Support base 

Steel 
housing 

Washer for Foil 

•  Energy loss 
through 0.8µm foil 
•  Proton 18.4 keV 
•  Triton  34.6keV  
•  3He     282keV 

•  Detective active 
layer 100µm 

PEEK Insulation 

Note: we use silicon surface barrier 
detectors and not silicon 
photodiode detectors. 



Acceptance of collimator 
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Acceptance: 
9.83x10-8 (Srm2) 
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Data acquisition schema 
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and NI PCI-5105 high-speed digitizer 
      LabVIEW software 

Canberra 2003BT Canberra 2111 

Ortec 
CU_014-050-100S 

Supermicro5016I-MTF Adnaco-S2 PCIe 

3m (not drawn to scale) from detector to preamp 
was not part of the original design but was an 
unavoidable constraint caused by the logistics of 
installation on the mechanical arm 



Signal dependence on Neutral Beam Injection 
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•  Data continuously 
sampled at 60MHz 
•  Length of plasma 
discharge ~ 0.5s 
•  Signals/ pulses 
showed clear 
dependence on 
neutral beam power 
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PD data 
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Characteristic particle signals found in data  
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•  Peak/ pulse shapes:  
•  Height ~0.6V for P (3MeV) 
•  Height ~0.2V for T (1MeV) 
•  Width ~100ns 
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Example noise signals found within a data channel 
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Pulse-height spectra without fitting data 
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•  Search for peaks 
(within a threshold) 
•  Determine their pulse 
height 
•  Histogram of pulse 
height 
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Peak fitting method to mitigate noise contribution 

15 

Vo
lt

ag
e 

 0                 0.5               1.0                1.5              2.0         
Time (µs) Time [μs]

1.0              2.0               3.0              4.0              5.0              6.0              7.0

Fit 
(line)

Raw 
data 
(point)

Fi
tte

d 
D

at
a 

[V
]

-1.0 

0.0

0.1 

0.2

0.3

0.4

0.5

0.6     Fit 
amplitude
�

Peak 
height

PD Fitted Data

•  Sample set of peaks are chosen, normalized, and used 
to create a peak fit function 

•  Data is fitted against quadratic background 

Data points 
from sample 
peaks 

V = V0e
�c1(t+t0)(1 + tanh(c2(t+ t0)))



Iteratively fit intervals of data within a channel  
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•  Within a time slice: 
•  Fix peak positions (width) 
•  Vary peak height (to get fit 
amplitude) 
•  Vary background (quadratic) 

Time slice 1 Time slice 2 Times slice 3 

Ts 1 Ts 3 Ts 2 


