Experimentally Investigating Fusion Plasma Instabilities Using MeV Proton Emissions

<u>R.V. Perez</u>¹, W.U Boeglin¹, D.S.Darrow², M. Cecconello³, I. Klimek³,
 S.Y. Allan⁴, R.J. Akers⁴, D.L. Keeling⁴, K.G. McClements⁴, R. Scannell⁴,
 M. Turnyanskiy⁵, A. Angulo¹, P. Avila¹, O. Leon¹, C. Lopez¹, O.M. Jones^{6,4},
 N.J. Conway⁴, C.A. Michael⁷, and the MAST Team⁵

MeV Proton Emission Diagnostic Motivation

- Proof of concept: advantage in size, cost, and energy resolution
- Successful prototype 3MeV proton detector at the Mega Amp Spherical Tokamak (MAST)
- Measure DD proton fusion rate profile
- Study MHD instability effects on proton rate

Neutral Beam

Injection

Proton

Detector

Prior Work with DD Charged Fusion Products

Collimated silicon detectors surface barrier detectors for detecting ions - Strachan (1986) and Lo et.al. (1995)
3MeV proton energy spectra in conventional tokamaks - Chrien et.al. (1983), Heidbrink et.al. (1985), and Bosch (1990)
MAST fast ion diagnostics -Jones et.al. (2013), Cecconello, et. al. (2014)
MAST neutron camera (NC) measures same profile using 2.5MeV neutrons

[Original Image Cecconello et al. (2012)]

DD Charged Fusion Product Emissions of Interest

• Primary

- D + D \rightarrow P (3MeV) + T (1MeV)
- D + D \rightarrow N (2.5MeV) + ³He (0.8MeV)

Secondary

- D + T \rightarrow N (14.1MeV) + ⁴He(3.5MeV)
- D + ${}^{3}\text{He} \rightarrow {}^{4}\text{He} (3.6\text{MeV}) + P(14.7\text{MeV})$

• Dominant signal from beam-plasma fusion events during Neutral Beam Injection (NBI)

• Potential application of proton detector (PD) to study beam ion confinement and heating profile

Poloidal and Toroidal Orbit Trajectories

Note an isotropic DD cross section is assumed

Orbit bundles for central trajectories

system

Mechanical probe arm pushes PD towards plasma

[Original Images CCFE, MAST]

Compact Housing: 110mm diameter, 185mm length

Main housing: detector assembly components

Note: we use silicon surface barrie detectors and not silicon photodiode detectors.

Acceptance of collimator

Data acquisition schema

Supermicro5016I-MTF

Adnaco-S2 PCIe and NI PCI-5105 high-speed digitizer LabVIEW software

3m (not drawn to scale) from detector to preamp was not part of the original design but was an unavoidable constraint caused by the logistics of installation on the mechanical arm

Signal dependence on Neutral Beam Injection

Data continuously sampled at 60MHz
Length of plasma discharge ~ 0.5s
Signals/ pulses showed clear

dependence on neutral beam power

Characteristic particle signals found in data

Example noise signals found within a data channel

Pulse-height spectra without fitting data

- Search for peaks (within a threshold)
- Determine their pulse height
- Histogram of pulse height

Peak fitting method to mitigate noise contribution

• Sample set of peaks are chosen, normalized, and used to create a peak fit function

 $V = V_0 e^{-c_1(t+t_0)} (1 + tanh(c_2(t+t_0)))$

Data is fitted against quadratic background

Iteratively fit intervals of data within a channel

- Within a time slice:
 - Fix peak positions (width)
 - Vary peak height (to get fit amplitude)
 - Vary background (quadratic)