Ketron 1000 PEEK stock shapes are produced from virgin polyetheretherketone resin and offer the highest toughness and impact strength of all Ketron PEEK grades. Both Ketron 1000 PEEK natural & black can be sterilised by all conventional sterilisation methods (steam, dry heat, ethylene oxide and gamma irradiation).

Physical properties (indicative values *)

PROPERTIES	Test methods	Units	VALUES
Colour | - | natural (brownish grey) / black | |
Density | ISO 1183-1 | g/cm³ | 1.31
Water absorption:
- at 24/96 h immersion in water of 23 °C (1) | ISO 62 | mg | 5.10
- at saturation in air of 23 °C / 50% RH | ISO 62 | % | 0.06 / 0.12
- at saturation in water of 23 °C | - | % | 0.20
Thermal Properties (2)
Melting temperature (DSC, 10 °C/min) | ISO 11357-1/3 | °C | 340
Glass transition temperature (DSC, 20 °C/min) (3) | ISO 11357-1/2 | °C | -
Thermal conductivity at 23 °C | - | W/(K.m) | 0.25
Coefficient of linear thermal expansion:
- average value between 23 and 100 °C | - | m/(m.K) | 50 x 10⁻⁶
- average value between 23 and 150 °C | - | m/(m.K) | 55 x 10⁻⁶
- average value above 150 °C | - | m/(m.K) | 130 x 10⁻⁶
Temperature of deflection under load:
- method A: 1.8 MPa | ISO 75-1/2 | °C | 160
Max. allowable service temperature in air:
- for short periods (4) | - | °C | 310
- continuously / for min. 20,000 h (5) | - | °C | 250
Min. service temperature (6) | - | °C | -20
Flammability (7):
- "Oxygen Index" | ISO 4589-1/2 | % | 35
- according to UL 94 (1/5 / 3 mm thickness) | - | V-0 / V-0
Mechanical Properties at 23 °C (8)
| | | |
Tension test (9):
- tensile stress at yield / tensile stress at break (10) | ISO 527-1/2 | MPa | 115 / -
- tensile strength (10) | ISO 527-1/2 | MPa | 118
- tensile modulus at yield (10) | ISO 527-1/2 | % | -
- tensile strain at break (10) | ISO 527-1/2 | % | 11
- tensile modulus of elasticity (11) | ISO 527-1/2 | MPa | 4300
Compression test (12):
- compressive stress at 1 / 2 / 5 % nominal strain (11) | ISO 804 | MPa | 38 / 75 / 140
Charpy impact strength - unnotched (13) | ISO 179-1/1eU | kJ/m² | no break
Charpy impact strength - notched | ISO 179-1/1eA | kJ/m² | 3.5
Ball indentation hardness (14) | ISO 2039 | N/mm² | 210
Rockwell hardness (14) | ISO 6089-2 | M 105
Electric Properties at 23 °C
| | | |
Electric strength (15) | IEC 60243-1 | kV/mm | 24
Volume resistivity | IEC 60093, Ohm.cm | > 10¹⁴
Surface resistivity | ANSI/EIA STP 11.11 | Ohm/sq. | > 10¹³
Relative permittivity ε₀:
- at 100 Hz | IEC 60250 | - | 3.2
- at 1 MHz | IEC 60250 | - | 3.2
Dielectric dissipation factor tan δ:
- at 100 Hz | IEC 60250 | - | 0.001
- at 1 MHz | IEC 60250 | - | 0.002
Comparative tracking index (CTI) | IEC 60112 | - | 150

Note: 1 g/cm³ = 1,000 kg/m³ ; 1 MPa = 1 N/mm² ; 1 kV/mm = 1 MV/m.

Product Data Sheet

Ketron® 1000 PEEK

Quadrant Engineering Plastic Products
global leader in engineering plastics for machining

www.quadrantplastics.com

Legend:

1. According to method 1 of ISO 62 and done on discs Ø 50 mm x 3 mm.
2. The figures given for these properties are for the most part derived from raw material supplier data and other publications.
3. Values for this property are only given here for amorphous materials and for materials that do not show a melting temperature (PEI & PI).
4. Only for short time exposure (a few hours) in applications where no or only a very low load is applied to the material.
5. Temperature resistance over a period of max. 20,000 hours. After this period of time there is a decrease in tensile strength — measured at 23 °C — of about 50 % as compared with the original value.
6. Temperature value given here is that based on the thermal oxidative degradation which takes place and causes a reduction in properties. Note, however, that the maximum allowable service temperature depends in many cases essentially on the duration and the magnitude of the mechanical stresses to which the material is subjected.
7. Impact strength decreasing with decreasing temperature, the minimum allowable service temperature is practically mainly determined by the extent to which the material is subjected to impact. The value given here is based on unfavourable impact conditions and may consequently not be considered as being the absolute practical limit.
8. Most of the figures given for the mechanical properties are average values of tests run on test specimens machined out of rod Ø 40 - 60 mm. Except for the hardness tests, the test specimens were then taken from an area mid between centre and outside diameter, with their length in longitudinal direction (parallel to the extrusion direction).
9. Test specimens: Type 1 B
10. Test speed: 50 mm/min [chosen acc. to ISO 10350-1 as a function of the ductile behaviour of the material (tough or brittle)]
11. Test speed: 1 mm/min.
12. Test specimens: cylinders Ø 8 mm x 16 mm
13. Pendulum used: 4 J
14. Measured on 10 mm thick test specimens (discs), mid between centre and outside diameter.
15. Electrode configuration: Ø 25 mm / Ø 75 mm coaxial cylinders; in transformer oil according to IEC 60296; 1 mm thick test specimens. Please note that the electric strength of Ketron PEEK-1000 [black] can be considerably lower than the figure listed in the table which refers to natural material.

This table, mainly to be used for comparison purposes, is a valuable help in the choice of a material. The data listed here fall within the normal range of product properties. However, they are not guaranteed and they should not be used to establish material specification limits nor used alone as the basis of design.