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Abstract: The results of experiments performed by a member of the Florida

International University’s experimental plasma physics research group will be

presented. The work was done in preparation for the testing of a proton detec-

tion system implemented at the Mega Amp Spherical Tokomak at the Culham

Centre for Fusion Energy in Oxfordshire, England. Monte Carlo methods were

implemented in Python to model and calculate the solid angle of acceptance

of the detectors. The results of the computer simulation were compared with

results of a spectroscopy experiment using an alpha particle emitter. This ex-

periment was implemented in order to measure the counting rate of the detector,

where particular interest was given to the change in said counting rate as the

source position changed. The results of both works will be compared and pre-

sented.
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Background

Plasma is the fourth fundamental state of matter, it is a quasi-

neutral gaseous mixture comprised of positively charged ions and

negatively charged electrons. As a consequence; plasmas can be ma-

nipulated, shaped, and confined if the appropriate configurations of

external electromagnetic fields are applied to them. [4] The tokamak

device was invented for this purpose. The standard configuration

uses horizontally and vertically aligned magnetic fields to warp it’s

plasma into a donut-like shape, forcing the nuclei and electrons to

travel in helically shaped trajectories.

Figure 1: Tokamak Field Configuration [1]

The plasma can then be heated by running the appropriate cur-

rent through the transformer coil, forcing a secondary current to run

through the gas itself. Following this is the neutral beam injection,

which involves firing a stream of neutral atoms towards the center

of the tokamak. As these atoms hit the plasma, they become ion-
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ized and transfer energy into the gas great enough to allow fusion

reactions to occur.

Nuclear fusion is the reaction that takes place when two light

atomic nuclei combine to form a new and heavier type of atomic

nucleus. The tokamak’s job is to force the nuclei to overcome the

repulsive Coulomb barrier and allow for the attractive nuclear po-

tential to meld them together. These reactions give off a relatively

clean source of energy that is hoped to be harvested for the purposes

of commercial electricity production. The reactions of interest in-

volve the fusion of hydrogen-2, or the deuteron (D),

D +D −→ T + p+ 4MeV (1)

D +D −→ 3He+ n+ 3.2MeV (2)

where T is triton (or hydrogen-3), p is the proton, n is the neu-

tron, and 3He is helium-3. [4] To study instabilities within the toka-

mak plasma, the trajectories of the protons are analyzed using a

sophisticated detection system at the facilities involving the Mega

Amp Spherical Tokamak (MAST) at the Culham Centre for Fusion

Energy in Oxfordshire, England. To aid in this project, a compu-

tational and experimental study of the counting efficiency of the

detection instruments was undertaken at the nuclear physics labo-

ratory at Florida International University in Miami, Florida.
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Introduction

A silicon surface barrier detector is a semiconductor diode that

has a very thin window on its face which allows charged particles to

enter it. Applying voltage across this device means that the electric

field will sweep out charged particles out of on area on the detec-

tor’s face called the depletion region. When charged particles enter

the detector, most of their energy is deposited into the depletion

region, with the ensuing separation of positive and negative carriers

creating a potential difference that is proportional to the energy of

the incident radiation. [7]

Figure 2: Diode Depletion Layer [6]

The efficiency and solid angle of acceptance are properties of the

detector that warrant study. The efficiency of a detector relates

the number of pulses outputted by the detector to the number of

particles incident on it. It is of convenience to quantify the detec-

tor’s efficiency and subdivide them into two classes, absolute (aka

geometric) and intrinsic, they are defined as such:
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εabs =
number of pulses recorded

number of particles emitted by source
(3)

εint =
number of pulses recorded

number of particles incident on detector
(4)

For the purposes of this study, the intrinsic efficiency is assumed

to be 100 percent, and so it is left to the task of calculating the

geometrical efficiency in terms of the solid angle of the acceptance

cone of the detector.

The solid angle is generally defined by the integral over the de-

tector surface area that faces a source, and in units of steradians is

of the form:

Ω =

∫
dA cos θ

R2
(5)

where R represents the relative position vector between the source

and a surface element dA, and θ is the angle between the normal

to the surface element and the source direction. [7] It is of interest

to derive the solid angle for the particular cases of a point source

located along and off of the axis of a right circular cylinder.

For the first case:
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Ω =

∫
dA cos θ

R2

=

∫
rdrdφ

h√
r2 + h2

1

r2 + h2

=

∫
hrdrdφ
3
√
r2 + h2

= h2π

∫
rdr

3
√
r2 + h2

= h2π
1

h
(1− h√

r2 + h2
)

= 2π(1− h√
r2 + h2

) (6)

Taking the Taylor expansion of the second equation inside the

parentheses is needed to complete the proof. Recall that the general

form of the Taylor series for a function f(x) at x = a up to the second

derivative is the following [3]

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
(x− a)2

2!
(7)

Some manipulation must be done to fit the function in question

d√
d2 + a2

=
d

d
√

1 + a2

d2

=
1√

1 + a2

d2

=
1√

1 + x2
(8)
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Therefore yielding the following useful result

f(x) =
1√

1 + a2
− a

3
√

1 + a2
(x− a)

+ (1− 2a2)
√

1 + a2
(x− a)2

2
|a=0

= 1− x2

2
(9)

Finally recalling the fact that x = (a/d) and returning to equation

(6), the value for the solid angle on the axis of the right circular

cylinder is computed

Ω = 2π(1− (1− x2

2
))

= 2π(1− 1 +
a2

d2

2
)

= π
a2

d2
(10)

For the off-axis case of a source located some distance (x,0,0)

away from the origin yields the following relative position vector,

recalling the position vector is offset due to its projections in x and

y planes at the azimuthal angle φ

~R = (x+ r cosφ)x̂+ (r sinφ)ŷ + hẑ (11)
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Plugging this back into equation (5) yields the following result:

Ω =

∫
hrdrdφ

3
√

(x+ r cosφ)2 + (r sinφ)2 + h2
(12)

This is an integral that cannot be solved analytically, however

the numerical techniques of the Monte Carlo method allows one

to bypass that stage all together and perform an even more direct

calculation.

Monte Carlo Simulation

Monte Carlo is a method of computing values such as probabil-

ities by means of a large number of repeated random samples and

obtaining a numerical result. This is performed using a program

written in Python, simulating the decay of a radiation source as it

emits particles uniformly in all directions. The code will see what

fraction of those particles enter into the detector and tabulate values

for the geometrical efficiency.

Figure 3: Vacuum Chamber
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The radiation source position is the origin, the collimator en-

trance is 154mm away in the z-direction, and the detector is 204mm

away also in the z-direction. The collimator is used to screen out

only those particles which fall into a very specific angle so as to

mimic collections of protons in the tokamak. The code will then

count as a ’hit’ those particles that have touched the circular face

of the detector only after having hit the appropriate part of the

collimator’s plane as well.

As was shown in preceeding sections, the solid angle is calcu-

lated from the values of the polar and azimuthal angles, and the

monte carlo algorithm randomly samples these angles in a uniform

fashion. The former of which is defined according to the goeme-

try. The position of the source is the origin, (0,0,0). The position

of the collimator-detector housing is in the z-direction, with the

collimator entrace at zc=(0,0,154)mm and the detector face is at

zd=(0,0,204)mm, with a radius of rc = 2.5mm. The radiation will

actually go forth beyond the plane of the detector, so an offset of

20mm is included in the calculation of θ in the following manner

θmin = arctan(
2 ∗ rc+ offset

zd
) (13)

The cosine of the polar angle and the azimuthal angle are sampled

randomly in the following ranges

cos θmin ≤ cos θ ≤ 1
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0 ≤ φ ≤ 2π

Therefore the unit vector in the direction of the propagation in

of the radiation in spherical coordinates can be calculated

~u = sin θ cosφx̂+ sin θ sinφŷ + cos θẑ (14)

The position of the source is variable, so the general position

vector is given by the equation

~R = ~s+ t~u (15)

To find the unknown x and y coordinates of ~R, take the known

z coordinate, solve for the line parameter t and then calculate the

final values of x and y:

t =
z

cos θ
=⇒ x = xs + tux, y = ys + tuy (16)

The issue at hand is to confirm if the above values fall into the

collimator entrance and then check if those values will also fall into

the face of the detector, this is done simply by checking those values

against the following inequality

x2 + y2 < R2 (17)
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The ratio of the number of x and y coordinates that satisfy equa-

tion (17) versus the total number of coordinates checked against

it are used to calculate the solid angle according to the following

relationship

Ω =
Nin

N
∆(cos θ)∆(φ) =

Nin

N
2π(1− cos θmin) (18)

Graphs pertaining to the distance of the source from the detector

were created, highlighting the difference in size between the projec-

tion of the radiation hitting the plane of the detector versus those

particles that actually hit the detector itself.

The following images highlight an idealized picture of the radia-

tion being emitted from the source.

Figure 4: Emission 1 Figure 5: Emission 2 Figure 6: Emission 3

These images highlight the radiation as it hits the plane of the de-

tector, with those that manage to make it into the detector higlighted

in red.

10



Figure 7: Projection 1 Figure 8: Projection 2 Figure 9: Projection 3

Alpha Particle Spectroscopy

The experimental portion of the project involved the use of a 241-

Americium source undergoing to following nuclear decay scheme:

241
95 Am→ 243

93 Np+ 4
2He (19)

where 241
95 Am is Americium-241, 243

93 Np is Neptunium-243, and

4
2He is the alpha particle. [8] It contains two protons and two neu-

trons and its detection serves as the means of physically testing the

counting efficiency of the detector. The series of steps involved in

the experiment are organized into the following flow chart

Figure 10: Experimental Procedure

Alpha particles carry energies of between 4-8 MeV and their

travel can be stopped by an ordinary piece of paper, and will not

travel more than 3.6cm in air. [7] For this reason, a vacuum chamber
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in conjunction with a Varian SD-450 vacuum pump is implemented

to bring down the atmosphere in the chamber to as low as 200mTorr

(263×10−6 atmospheric pressure). The implemented preamplifier is

the model 2003BT from the Canberra Corporation and the imple-

mented amplifier is the model 570 from ORTEC. The multi-channel

analyzer is the Easy-MCA from ORTEC connected to the Maestro-

32 software for Windows.

Spectroscopy details measuring the energy of particles emitted

by radiation sources, where the emission is produced by various

nuclear reaction such as in equation (19). An energy spectrum is a

function giving the distribution of particles in terms of their energy.

For the purposes of this experiment, the integral energy spectrum

will be focused on, which is defined as the number of particles with

energy greater than or equal to some energy E. It can be defined

analytically as:

N(E) =

∫
n(E)dE (20)

where n(E)dE is the number of particles with energies between E

and E+dE, and n(E) alone is the number of particles per unit energy

interval. [8] Consider a typical spectrum produced by the source,

which was collected via the Maestro software and then highlighted

and analyzed using Python:
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Figure 11: Alpha Peak

The one pronounced peak in the spectrum demonstrates the

mono-energetic nature of the source, emitting particles with an un-

known energy Eo, it imples that the value of n(E) approaches zero

for any energies other than E = Eo. The integral spectrum N(E) is

almost constant for all energies E ≤ Eo, since only those particles

with energy Eo exist. [8] It is not possible to calculate a numeric

value for the Eo of this source, since it is impossible to calibrate the

equipment for a source of energy that is not previously known.

From the values observed, the activity of the radiation source can

be calculated from the following relationship

Activity = (
Σα

tL
)(

4πs2

πr2
) (21)
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where Σα is the gross number of counts underneath the peak, tL

is the live time of the measurement in seconds, s is the distance from

the source to the detector in cm, and r is the detector radius also

in cm. [5] According to equation (21), the value of the activity is

proportional to a scaled solid angle by the count rate, for the ideal

case of the source looking at the detector straight on the value is

6x10−6Ci.

Results

The solid angle is a function of the geometry, and changes ac-

cording to the distance the source is from the detector, therefore

the solid angle from the simulations and count rate from the exper-

iments have been graphs seperately. The uncertainties in the data

are calculated according to the following equation, which in its gen-

eral form assumes there exists some function u dependent on the

variables x, y, and z. The uncertainty in u is then

σu =

√
(
∂u

∂x
σx)2 + (

∂u

∂y
σy)2 + (

∂u

∂z
σz)2 (22)

where for example ∂u/∂x is the rate of change of u with respect

to x and σx is the standard deviation of u also with respect to x. [2]

Therefore, according to equation (22), the uncertainty in the solid

angle is

σΩ =

√
Nin

N
2π(1− cos θmin) (23)
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The uncertainty in the count rate, also according to equation

(22), is

σr =

√
Σα

tL
2

(24)

Figure 12: Computational Data Figure 13: Experimental Data

To obtain a measure of how the two data sets correlate with each

other, both data sets and their uncertainty measurements have been

normalized to unit-less quantities and plotted on top of each other as

functions of the distance, and the output of this is presented below
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Figure 14: Activity as a function of distance

Conclusions and Future Work

A functional relationship between the solid angle of acceptance of

the detetor and its distance from the radiation source was studied,

with the experimental results serving to validate the computational

simulations and vice versa. Issues have arisen in the analysis that

involve disconnects between the shapes of the computational and

experimental data sets. Specifically the saturation that is observed

in the computational data set is not observed in the more peak like

nature of the experimental data. The cause of this deviation is at

the present time unknown, though several explanations are plau-
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sible. These would invovle inefficiencies in the numerical method

used to compute the data or the measurements of the distances

involved in the experiment were not measured to within the appro-

priate degree of accuracy. To correct for this, several things need

to be re-examined. More efficient computational methods need to

be explored and more accurate measurements need to be made with

regard to the experimental setup. A greater number of measure-

ments need to be taken during future experiments so as to improve

the statistics and calculate the true collection efficiency of the de-

tectors. This is crucial for the comparison and analysis of the data

from the tokamak diagnostic.
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