
Orbit Code Approximations

Omar Leon

1 Introduction

The Orbit Code is a program which numerically calculates the trajectories of charged par-
ticles through magnetic field lines. The code required approximations to more accurately
calculate detector efficiencies and particle trajectories. Two approximations that were
considered are the geometry of the collimator and the total efficiency of the detectors as
they are segmented into equal parts. Through more accurate calculations the Orbit Code
can be used in conjunction with experimental data to arrive at models for the emissivity
density of the fusion reactions in deuterium-deuterium plasmas.

2 Collimator Geometry

The Orbit Code has a square collimator which acts as the mechanical filter for the detec-
tor. The Charged Fusion Product Diagnostic utilizes a cylindrical collimator; as a result,
it is necessary to calculate the deviation between the solid angle of acceptance between
a square collimator and a cylindrical collimator.

Regardless of the shape of the collimator, the amount of particles that enter through
the collimator and reach the bottom of it is dependent on the angle between the incoming
particles and the collimator entrance, θ. Therefore, the amount of particles which enter
the collimator is Aentrance cos θ where Aentrance is the area of the collimator entrance. The
effective solid angle of acceptance of a collimator is given by equation 1, where T(θ) is
the transmission coefficient which is determined by the shape of the collimator. Figure 1
depicts a cross sectional view of the relationship between the incoming particles and the
collimator.

SAeffective =

∫ θmax

0

T (θ)Aentrance cos θdΩ (1)

The transmission coefficient is the the area of overlap between the area created by the
incoming particles extended to the vertical height of the detector and the active area of
the detector. The area of overlap based on the type of collimator is shown in figure 2.

The results produced by equation 1 when using each collimator and the deviation
between the two are shown in table 1.

3 Segmentation Efficiency

Using a square collimator, the Orbit Code is capable of segmenting the collimator en-
trance into equal parts along both sides of the square. This function allows for the

1

Figure 1: The red rectangle is a cross sectional view of the collimator and the black dots
are incoming particles.

(a) Area of Overlap Created by a Square Collimator

(b) Area of Overlap Created by a Circular Collima-
tor

Figure 2: Section A is the area of particles that have gone through the collimator entrance.
Section B is the active area of the detector. Section C is the area of overlap between
section A and B.

2

Table 1: Effective Solid Angle of Acceptance (Srṁ2)

Square Collimator Circular Collimator Deviation (%)
9.83×10−8 9.82×10−8 0.1

determination of the amount of area a detector can probe; the more segmented the col-
limator entrance the better this scope is defined. In theory, the total efficiency of the
detectors should be the same regardless of the number of segmentations were applied to
the collimator entrance. However, the numerical calculations performed by Fortran have
slight deviations in the total efficiency of the detector as the number of segments increases
(figure 4).

Figure 3: The total efficiency of the detectors notably decreases from 1 segment to 25
segments but stays at the same relative level as the segments increase beyond 25 segments.

3

Table 2: Total Efficiency vs Segments

Segments Total Efficiency Deviation of Total Efficiencies (%)
1 6.029×10−9 0.
9 5.983×10−9 0.76
25 5.979×10−9 0.83
49 5.978×10−9 0.85
81 5.978×10−9 0.85
121 5.978×10−9 0.85
625 5.977×10−9 0.86

4 Conclusion

For now, the necessary approximations to the Orbit Code have been complete. The ge-
ometry for the collimator shape, such as converting from a square to a circular collimator,
does not need to be changed in the Orbit Code. This is due to the deviation between
the solid angle of acceptances to be less than 1%. In other words, the difference between
the acceptances is small enough for us to accept the acceptance of a square collimator
as a proper approximation. Additionally, no correction factor needs to be included when
calculating the total efficiency of the detectors as the segmentation of the collimator in-
creases. Even though there was a noticeable drop in efficiency between 1 segment and
9, the deviation between the efficiencies was less than 1%. Furthermore, the efficiencies
seem to be asymptotic with respect to the number of collimator segments as the difference
in efficiency between 121 segments and 625 segments is 0.001 (as shown in Table 2).

4

A Program to Calculate Solid Angle of Acceptance of a Cylinder

This follow is the code to calculate the solid angle of acceptance of a cylindrical collimator.
The Main Accept program performs the integration of equation 1.

PROGRAM Main_Accept

use acceptancemod

implicit none

INTERFACE

FUNCTION max_theta(r,d)

REAL, INTENT(IN) :: r,d

REAL :: max_theta

END FUNCTION max_theta

FUNCTION cc(theta, d)

REAL, INTENT(IN) :: theta,d

REAL :: cc

END FUNCTION cc

FUNCTION area_overlap(x1,y1,r1,x2,y2,r2)

REAL, INTENT(IN) :: x1,y1,r1,x2,y2,r2

REAL :: area_overlap

END FUNCTION area_overlap

FUNCTION acceptance(zeta)

REAL, INTENT(IN) :: zeta

REAL :: acceptance

END FUNCTION acceptance

FUNCTION acceptancearea(zeta)

REAL, INTENT(IN) :: zeta

REAL :: acceptancearea

END FUNCTION acceptancearea

END INTERFACE

real :: s1,s2, angle_max

! Declare local variables

angle_max = max_theta(rs,dm)

call qsimp(acceptancearea, 0., angle_max, S1)

call qsimp(acceptance, 0., angle_max, S2)

write(*,*) ’---’

write(*,*) ’---’

write(*,*) ’---’

write(*,*) ’The acceptance is ’, S1, ’steridians*m^2.’

write(*,*) ’---’

5

write(*,*) ’---’

write(*,*) ’---’

write(*,*) ’The solid angle of acceptance is ’, S2, ’steridians.’

END PROGRAM Main_Accept

The max theta function calculates the angle at which no particle will enter
the collimator entrance

!---

!--

! Calculates the maxium angle of entry theta.

Real Function max_theta(r,d)

implicit none

real, intent(in) :: r,d

max_theta = atan(2.*r/d)

end function max_theta

The cc function calculates the center of the ”shadow” caused the particles entering the
collimator entrance based on the angle between the incoming particles and the collimator.

!--

!--

! Calculates the center x point for the second circle.

real function cc(theta, d)

implicit none

real, intent(in) :: theta, d

cc = d*sin(theta)/cos(theta)

end function cc

The area overlap function calculates the area of overlap between two circles.

REAL FUNCTION area_overlap(x1,y1,r1,x2,y2,r2)

! This function is meant to calculate the area of overlap between two circles.

! Using the centers and radii of two circles their amount of overlap is

calculated.

! Declaring the variables

use acceptancemod

implicit none

6

real, intent(in):: x1,y1,r1,x2,y2,r2

! Determining distace between the centers.

write(*,*) ’The center of a circle is’, [x1,y1],’ with radius’, r1,’.’

write(*,*) ’The center of the other circle is’, [x2,y2], ’with

radius’, r2,’.’

distance = sqrt((x2-x1)**2 + (y2-y1)**2)

write(*,*) ’Distance between the centers is’, distance

! Determining if the circles overlap.

! If the distance between the centers is less than the sum of the radii the

circles intersect or overlap.

if (distance .lt. r1 + r2) then

! If the some of one radii and the distance between the centers is less than

the other radii

! then the circles overlap.

if (distance + r1 .le. r2 .or. distance + r2 .le. r1) then

ol = 0.

else

ol = 1.

end if

! If the distance between the centers is greater than the sum of the radii

there is no overlap.

else if (distance .ge. r1 + r2) then

ol = 2.

end if

! Calculating for the area of overlap if ol = 1.

if (ol .eq. 1.) then

! Distance between x coordinates of centers.

7

dx = abs(x2 - x1)

write(*,*) ’The difference between the x coordinates of the

center is’, dx

! Distance between y coordinates of centers.

dy = abs(y2-y1)

write(*,*) ’The difference between the y coordinates of the

center is’, dy

! Center of the area of overlap.

center_ellipse = abs((distance**2 + r1**2 - r2**2)/(2*distance))

write(*,*) ’Center of the ellipse is’, center_ellipse,’from the

center of the circles.’

intersectx(1) = x1 + dx*center_ellipse/distance +

(dy/distance)*sqrt(r1**2 - center_ellipse**2)

intersectx(2) = x1 + dx*center_ellipse/distance -

(dy/distance)*sqrt(r1**2 - center_ellipse**2)

intersecty(1) = y1 + dy*center_ellipse/distance -

(dx/distance)*sqrt(r1**2 - center_ellipse**2)

intersecty(2) = y1 + dy*center_ellipse/distance +

(dx/distance)*sqrt(r1**2 - center_ellipse**2)

write(*,*) ’The points of intersection are (’,

intersectx(1),’,’, intersecty(1),’) and (’,

intersectx(2),’,’,intersecty(2),’).’

! Calculating the area of intersection

height = sqrt((intersectx(1) - intersectx(2))**2

+(intersecty(2) - intersecty(1))**2)

write(*,*) ’The height of the ellipse is’, height

! First Circle of the Left

if (x2 .ge. x1) then

! Geometric calculations.

theta = 2.*asin(height/(2*r2)) ! Angle of First Circle’s

Sector

u1 = sqrt(r2**2 - (height/2)**2)

8

area1 = theta*(r2**2)/2 - u1*height/2 ! Area of First

Circle

if (distance > u1) then

phi = 2*asin(height/(2*r1)) ! Angle of Second

Circle’s Sector

u2 = sqrt(r1**2 - (height/2)**2)

area2 = phi*(r1**2)/2 - u2*height/2 ! Area of

Second Circle

else if (distance == u1) then

area2 = 0.5*pi*r1**2 ! Area of Second Circle

else if (distance < u1) then

phi = 2*asin(height/(2*r1)) ! Angle of Second

Circle’s Sector

u2 = sqrt(r1**2 - (height/2)**2)

area2 = (2*pi - phi)*(r1**2)/2 + u2*height/2 !

Area of Second Circle

end if

area_overlap = area1 + area2

write(*,*) ’When OL=’, ol,’the over lap area

is’,area_overlap

! First Circle on the Right

!

else if (x2 .lt. x1) then

! Geometric calculations.

!

theta = 2.*asin(height/(2*r2)) ! Angle of Second

Circle’s Sector

u1 = sqrt(r2**2 - (height/2)**2)

area1 = theta*(r2**2)/2 - u1*height/2 ! Area of Second

Circle

write(*,*) ’Area1 is’, area1

if (distance > u1) then

9

phi = 2*asin(height/(2*r1)) ! Angle of Second

Circle’s Sector

u2 = sqrt(r1**2 - (height/2)**2)

area2 = phi*(r1**2)/2 - u2*height/2 ! Area of

Second Circle

write(*,*) ’Area2 is’, area2

else if (distance == u1) then

area2 = 0.5*pi*(r1**2) ! Area of Second Circle

else if (distance < u1) then

phi = 2*asin(height/(2*r1)) ! Angle of Second

Circle’s Sector

u2 = sqrt(r1**2 - (height/2)**2)

area2 = (2*pi - phi)*(r1**2)/2 + u2*height/2 !

Area of Second Circle

end if

area_overlap = area1 + area2

write(*,*) ’When OL=’, ol,’the over lap area

is’,area_overlap

end if

! If there is a complete overlap.

else if (ol .eq. 0.) then

if (r1 < r2) then

area_overlap = pi*(r1**2)

write(*,*) ’When OL=’, ol,’the over lap area

is’,area_overlap

else if (r1 >= r2) then

area_overlap = pi*(r2**2)

write(*,*) ’When OL=’, ol,’the over lap area

is’,area_overlap

end if

! If there is no overlap.

10

else if (ol == 2.) then

area_overlap = 0.

write(*,*) ’When OL=’, ol,’the over lap area is’,area_overlap

end if

end function area_overlap

The acceptancearea function provides equation 1 for the program to integrate.

!---

!---

! Calculates the acceptance with the direction of the particles taken into

consideration

real function acceptancearea(zeta)

USE acceptancemod

implicit none

Interface

FUNCTION cc(theta, d)

REAL, INTENT(IN) :: theta,d

REAL :: cc

END FUNCTION cc

FUNCTION area_overlap(x1,y1,r1,x2,y2,r2)

REAL, INTENT(IN) :: x1,y1,r1,x2,y2,r2

REAL :: area_overlap

END FUNCTION area_overlap

End Interface

real, intent(in) :: zeta

real :: c2_area

xp = cc(zeta, dm)

ic = area_overlap(x,y,r,xp,yp,rp)

if (xp == 0. .and. rp==r) then

transmission = 1.

else

c1_area = pi*rp**2

transmission = ic/c1_area

end if

c2_area = pi*rp**2

11

acceptancearea = 2*pi*transmission*c2_area*cos(zeta)*sin(zeta)

end function acceptancearea

The acceptance function is a weighted integral of the solid angle of acceptance of a
cylinder.

!---

!---

! Calculates the acceptance

real function acceptance(zeta)

USE acceptancemod

implicit none

Interface

FUNCTION cc(theta, d)

REAL, INTENT(IN) :: theta,d

REAL :: cc

END FUNCTION cc

FUNCTION area_overlap(x1,y1,r1,x2,y2,r2)

REAL, INTENT(IN) :: x1,y1,r1,x2,y2,r2

REAL :: area_overlap

END FUNCTION area_overlap

End Interface

real, intent(in) :: zeta

real :: c2_area

xp = cc(zeta, dm)

ic = area_overlap(x,y,r,xp,yp,rp)

if (xp == 0. .and. rp==r) then

transmission = 1.

else

c1_area = pi*rp**2

transmission = ic/c1_area

end if

c2_area = pi*rp**2

acceptance = 2*pi*transmission*sin(zeta)

end function acceptance

The makefile combines all of the files into an executable.

#-----Makefile for Soild Angle of Acceptance-------

%.o: %.f

12

$(F90) -c $(FFLAGS1) $< -o $@

%.o: %.f90

$(F90) -c $(FFLAGS) $< -o $@

Acceptance_OBJ = acceptancemod.o areaoverlap.o maxtheta.o cc.o qsimp.o

trapzd.o MainAccept.o acceptance.o acceptancearea.f90

#INCLUDE = ../include/

F90 = gfortran

#FFLAGS = -ffixed-line-length-none $(FDFLAG) \

-fno-align-commons -w -fno-automatic -I$(INCLUDE)

FFLAGS = -ffree-form

FFLAGS1 =

#--

all: $(Acceptance_OBJ)

if (test -f "acceptancemod.mod"); then rm acceptancemod.mod; fi

$(F90) $(Acceptance_OBJ) -o accept

#example of creating object files the long way

#magfld.o: magfld.f

$(F90) -c magfld.f $(FFLAGS) -o $@

#--

clean:

rm *.o *.a *.mod accept testing

#acceptancemodcheck.mod: acceptancemod.f90

if (test -f "acceptancemod.mod"); then rm acceptancemod.mod; fi

$(F90) -c $(FFLAGS) $< -o /temp/xx

#acceptancemod.mod: acceptancemod.f90

$(F90) -c $(FFLAGS) $< -o acceptancemod.o

#area_overlap.o : area_overlap.f90

$(F90) -c $(FFLAGS) $< -o area_overlap.o

#max_theta.o : max_theta.f90

$(F90) -c $(FFLAGS) $< -o max_theta.o

#qsimp.o : qsimp.f

$(F90) -c $(FFLAGS1) $< -o qsimp.o

#trapzd.o : trapzd.f

$(F90) -c $(FFLAGS1) $< -o trapzd.o

#acceptance.o : acceptance.f90

13

$(F90) -c $(FFLAGS) $< -o acceptance.o

#Main_Accept.o : Main_Accept.f90

$(F90) acceptancemod.o area_overlap.o max_theta.o qsimp.o trapzd.o

acceptance.o -c $(FFLAGS) $< -o Main_Accept.o

14

