
CHARGED FUSION PRODUCT TRAJECTORY

SIMULATIONS

Omar Leon1

1Florida International University Department of Physics

Spherical tokamaks use magnetic fields to produce and confine plasmas. Due to

the magnetic properties of plasmas and the magnetic fields of tokamaks, current

diagnostics focus on detecting neutral particles. When the temperature of plasmas,

composed of hydrogen isotopes, are sufficiently energetic, the isotopes react with

one another emitting protons and other charged particles. These reactions are called

fusion reactions. A new diagnostic, the charged fusion product diagnostic is geared

towards detecting protons in order to expand the methods of studying plasmas. How-

ever, the complex nature of plasmas and the magnetic fields makes calculating many

plasma properties analytically impossible. In conjunction with the charged fusion

product diagnostic, a program called the Orbit Code was developed and tailored to

the requirements of the diagnostic in order to determine the trajectories of protons

emitted from fusion reactions inside in the Mega Amp Spherical Tokamak (MAST)

located at the Culham Centre for Fusion Energy (CCFE). The approximations used

in the Orbit Code for its calculations had to be reviewed for accuracy and correct-

ness. Using these predictions, the diagnostic can be placed in the locations that

most effectively samples the plasmas and compare the experimental results with the

theoretical models created through the Orbit Code.

2

CONTENTS

I. Introduction 3

A. Background 3

B. The Orbit Code 5

II. Input Section 8

III. Fortran Section 10

A. Acquiring the Data 10

B. Coordinating and Executing Fortran subroutines 11

IV. Orbit Code Approximations 12

A. Collimator Geometry 13

B. Segmentation Efficiency 14

V. Python Section 16

VI. Results 19

VII. Post Experiment Applications 20

VIII. Conclusion 25

IX. Acknowledgements 27

A. Program to Calculate Solid Angle of Acceptance of a Cylinder 28

3

I. INTRODUCTION

A. Background

Plasmas are produced by heating a gas until a large portion of the atoms have been ionized.

[? , pg.2-3] Their ionized property allows them to be altered by magnetic fields; machines,

called tokamaks (figure 1), use this fact to produce and confine plasmas.

FIG. 1: General Setup of Tokamak [?]

The process by which tokamaks create and maintain plasmas includes several steps. First,

gas is introduced into the tokamak and a current is run through the primary transformer cir-

cuit, located in the center of the tokamak, to induce a current(carried by a few pre-existing

ions) through the gas, which acts as the secondary coil of the transformer. As the gas gains

temperature, electrons are removed from the atoms, the gas becomes more and more ion-

ized, and the gas transitions into a plasma state. This method of heating, by driving current

through the plasma, is called ohmic heating.[?]

To achieve fusion within the plasma, the gas is composed of hydrogen isotopes, either deu-

terium, tritium, or a mixture of both, and plasma temperatures need to exceed 100 million

degrees Celsius. To achieve these temperatures, two methods are employed, either simul-

taneously or individually: radio frequency heating and neutral beam injection. In radio

frequency heating, currents of high frequency oscillations are induced in sections of the

plasma that resonate with the current frequency. In doing so, the particles in the induced

current gain kinetic energy, thus increasing the temperature in the region. In neutral beam

4

injection, neutral deuterium atoms bombard the plasma and the kinetic energy of the colli-

sions increases the temperature.[?]

Due to the strong magnetic fields, diagnostic systems, instruments used to measure phys-

ical parameters, traditionally rely on detecting neutral particles as their trajectories are

not altered by the magnetic fields of the tokamak. A charged fusion product diagnostic

(CFPD), shown below, was developed to detect charged reaction products in order to de-

termine the emissivity profile of plasmas, a distribution function representing the density of

fusion reactions. The full diagnostic is show in the figures below.

FIG. 2: Sliced view of Fully Constructed CFPD[? , pg.1]

FIG. 3: The left side of the image is the collimator & detector Setup. The right side of the

image is a transparent view of same setup[? , pg.1]

5

Figure 2 shows the CFPD diagnostic, where it is shown that each detector varies in distance

relative to the top of the shielding. Figure 3, shows a more detailed view of the detectors

in conjunction with their respective collimators, mechanical structures that filter incoming

particles . To test this diagnostic, deuterium plasmas were studied heated with neutral beam

injections. This fusion reaction results in one of the two following reactions:

2H +2 H →1 H +3 H + 3.27MeV

FIG. 4: Deuterium (2H) and Deuterium react to create a proton (1H)

and a triton (3H) with a release of energy , given in MeV.[? , pg. 18]

2H +2 H →3 He +1 n + 4.03MeV

FIG. 5: Deuterium (2H) and Deuterium react to create a neutron (n)

and helium-3 ions (3He) with a release of energy, given in MeV.[? , pg.

18]

The proton of the above reactions will be detected by the CFPD while the neutron will be

detected by a neutron camera. The data collected from both systems will be compared to

ensure the CFPD is functioning properly. This can be done under the assumption that a

similar number of protons and neutrons are emitted. As the emitted charged particles move

through the tokamak they experience a force due to the magnetic field. A new convention

of angles was defined to describe where the detectors are oriented with respect to the center

of the tokamak (shown in figure 6).

The center of the tokamak is the origin in figure 6, the φ angle is defined as the angle

between the detector and the x-z plane, and the θ angle is the angle between a projection

of the detector on the x-z plane and the z-axis.

To alter the CFPD’s distance from the center of the tokamak and to rotate it, the CFPD

is mounted on a reciprocating probe arm (see figure 7) that is controlled remotely and is

taken to be along the x axis of figure 6 for the purposes of determining the orientation of

the detectors.

B. The Orbit Code

The complicated magnetic fields inside a tokamak plasma require a numerical solution of the

equation of motion for the charged particles. A program, call the Orbit Code, was modified to

6

FIG. 6: Angles Defined for Detector Orientation

FIG. 7: Rendering of Detector Setup Within Tokamak (not to scale)

calculate a proton trajectories and the charged particle emissivity of the plasma along these

trajectories using MAST’s equilibrium magnetic field configuration and physical limitations.

For the CFPD, the Orbit Code needed to be adapted to more accurately approximate the

7

experimental setup. The new version can determine which portions of the plasma was

sampled by each detector. This made the Orbit Code an invaluable part of the experiment

when deciding how to orient the diagnostic between each experimental run for the most

effective data collection.

The code is structured into three different portions: the input section, the Fortran portion,

and the Python portion. Each section had its own alterations to meet the experiment’s

demands. The original graphical output of the Orbit Code is shown in figure 8.

FIG. 8: Original Output Graph of the Orbit Code

In figure 8, the leftmost graph is a vertically sliced view of the tokamak and plasma presenting

the lines of constant parameter, such as pressure and magnetic flux; the colored region

describes the emissivity profile where the most dense region is deep red; and the purple lines

demarcate the proton trajectories, or orbits. Protons that are emitted from the emissivity

profile, tangential to the orbits, towards the outside of the tokamak will be detected as they

terminate on the same point. The rightmost graph is a top of the horizontal mid-plane of

the tokamak and proton trajectories. There were several factors in the code that limited

how well it could approximate the physical experimental setup. Chief among these factors

was the inability to individualize each detector orientation, calculate the effects of rotation

8

on the CFPD.

Furthermore, the CFPD utilizes a cylindrical collimator, which acts as the mechanical filter

for the detector. The Orbit Code has a square collimator; as a result, it is necessary to

calculate the deviation between the solid angle of acceptance between a square collimator and

a cylindrical collimator. Using a square collimator, the Orbit Code is capable of segmenting

the collimator entrance into equal parts along both sides of the square. This function allows

for the determination of the amount of area a detector can probe; the more segmented the

collimator entrance the better this scope is defined. Figure 9 gives a pictorial representation

of the result of segmenting a single detector.

FIG. 9: Single Detector Probing Fusion Region

The colored region of lines that terminate at the same point describes the area probed by

one, specific detector.

II. INPUT SECTION

The input section for the Fortran portion of the Orbit Code focuses on three main type of

files. They are as follows:

9

1. Efit file:

A data file that gives the magnetic field configuration of the plasma at an instant

in time. It is used to model the plasma’s overall shape and the trajectories of the

particles emitted from fusion reactions.

2. Limiter file:

A data file which provides the physical structure inside the tokamak, setting limits to

many of the calculations performed by the Orbit Code.

3. Name list (.nml) file:

A data file that contains a variety of parameters that are necessary for calculation,

including the detector orientations and where the collimator entrances are located in

the tokamak, and what efit and limiter files are used.

This .nml file needed to be altered to allow for a greater degree of flexibility for each detector.

Prior to alterations, many parameters were determined by using a step function with an

initial value. For example, the θ angles of the detectors were written in the following way:

theta_port = 60.

vary_theta_port = F

theta_port_stop = 83.

theta_port_step = 7.5

In this manner, the Fortran portion of the code would use the initial position given and

then, if vary theta port equaled True, it would alter the initial value by the step amount

until the stop limit was reached.

In order to grant the user the ability to choose which detector and how many to use in the

analysis and the individual orientation, the .nml file was divided into two files. The first file

is called Static MAST.nml where the parameters that rarely change are stored. Examples of

these parameters are the efit file and the model used to model the plasma’s emission profile.

The second file is called dynamic input.data and it contains the information that changes

more frequently such as the radial positions of the detector with respect to the center of the

tokamak. This second file is used exclusively in the Python portion of the Orbit Code and

includes all of the physical parameters of the detector system and the radial position of the

10

collimator entrance closest to the plasma. The input format of the Static MAST.nml file is

identical to its unaltered counterpart; it is in the dynamic input.data file where the format

changes. When the two files are used in conjunction, the .nml file created and used by the

Fortran portion has the following, altered format:

detectors = 4

detector_number(1)= 1

detector_number(2)= 2

detector_number(3)= 3

detector_number(4)= 4

theta_port(1)= 40.0

theta_port(2)= 40.0

theta_port(3)= 40.0

theta_port(4)= 40.0

This method gave the user of the program much greater flexibility when assigning values

to each detector. In this new format, the detectors and detector number allow the user to

choose how many detectors and which detectors to use in the analysis. Additionally, every

parameter that used to be calculated using the step method described above is given its own

value independent of the other parameters.

III. FORTRAN SECTION

All of the computations for the plasma parameters including the particle trajectories, the

magnetic flux, and the emissivity profile occur in this section of the Orbit Code.

A. Acquiring the Data

The .nml file is read by a file called rdpar nml.f, short for read parameters name list, and the

parameters in the .nml file are stored as several variables. In the original file, rdpar nml.f

used the step and stop inputs to create each detector orientation. This file was altered to

execute the following code instead:

11

do i = 1, detec

ports(i) = theta_port(detector_number(i))*dtr

portsph(i) = phi_port(detector_number(i))*dtr

Al0s(i) = gyro_angle(detector_number(i))*dtr

be0s(i) = pitch_angle(detector_number(i))*dtr

rds(i) = rdist(detector_number(i))

zds(i) = zdist(detector_number(i))

phda(i) = phdangle(detector_number(i))

end do

where dtr is the conversion value from degrees to radians. In this manner, each detector is

assigned a unique set of variables.

B. Coordinating and Executing Fortran subroutines

A separate file, named orbit.f, organizes the data and calls a separate subroutine, named

chrien, to execute all of the calculations to model the plasma, emissivity density, and particle

trajectories. This process occurred through a series of conditional statements based on the

original .nml file. Since these conditionals became obsolete after the .nml file was changed,

the orbit.f file was altered to do the same function with a single loop as follows:

do j= 1, detec

port = ports(j)

portph = portsph(j)

RD = rds(j)

be0 = be0s(j)

al0 = al0s(j)

zd = zds(j)

phd = phda(j)

call chrien

end do

12

Through this single do loop, each time chrien is called, each detector has its own unique

parameters.

IV. ORBIT CODE APPROXIMATIONS

The Orbit Code uses a square collimator entrance; however, the CFPD uses a cylindrical

collimator. To ensure that the proper theoretical rates of emission are calculated, the solid

angle of acceptance for a square and cylindrical collimator need to be similar. The code

also has the capability of segmenting the collimator entrance into smaller, equal pieces. By

segmenting the collimator entrance, it is possible to determine how much of the fusion region

as single detector can probe. Figure 10 shows the range of the bundle, shown in figure 9,

as a function of segments. The use of this segmentation needed to be justified by ensuring

that the efficiency of the detector is not affected by the segmentation.

FIG. 10: The range of the bundle, the difference between the other and inner orbits remain

constant after 49 segments.

13

A. Collimator Geometry

Regardless of the shape of the collimator, the amount of particles that enter through the

collimator and reach the active area of the detector is dependent on the angle between

the incoming particles and the collimator entrance, θ. Therefore, the amount of particles

which enter the collimator is Aentrance cos θ where Aentrance is the area of the collimator

entrance. The effective solid angle of acceptance of a collimator is given by equation 1,

where T(θ) is the transmission coefficient which is determined by the shape of the collimator.

Figure 11 depicts a cross sectional view of the relationship between the incoming particles

and the collimator.

FIG. 11: The red rectangle is a cross sectional view of the collimator and the black dots

are incoming particles.

SAeffective =

∫ θmax

0
T (θ)Aentrance cos θdΩ (1)

The transmission coefficient is the area of overlap between the area created by the incoming

particles extended to the vertical height of the detector and the active area of the detector.

The area of overlap based on the type of collimator is shown in figure 12.

14

(a) Area of Overlap Created by a

Square Collimator

(b) Area of Overlap Created by a

Circular Collimator

FIG. 12: Section A is the area of particles that have gone through the collimator entrance.

Section B is the active area of the detector. Section C is the area of overlap between

section A and B.

TABLE I: Effective Solid Angle of Acceptance (Srṁ2)

Square Collimator Circular Collimator Deviation (%)

9.83×10−8 9.82×10−8 0.1

The results produced by equation 1 when using each collimator and the deviation between

the two are shown in table 1.

B. Segmentation Efficiency

In theory, the total efficiency of the detectors should be the same regardless of the number of

segmentations were applied to the collimator entrance. However, the numerical calculations

performed by Fortran have slight deviations in the total efficiency of the detector as the

number of segments increases (figure 13). By comparing the efficiencies as the number of

segments increase, it is possible to determine whether or not the segmentation function of

the code can be used for data analysis.

15

FIG. 13: The total efficiency of the detectors notably decreases from 1 segment to 25

segments but stays at the same relative level as the segments increase beyond 25 segments.

TABLE II: Total Efficiency vs Segments

Segments Total Efficiency Deviation of Total Efficiencies (%)

1 6.029×10−9 0.

9 5.983×10−9 0.76

25 5.979×10−9 0.83

49 5.978×10−9 0.85

81 5.978×10−9 0.85

121 5.978×10−9 0.85

625 5.977×10−9 0.86

16

V. PYTHON SECTION

The Python section runs the Fortran executable, organizes the output files created by Fortran

and generates a plot that visually represents the results. The original code ran using two

Python scripts, run orbit nml.py and plot orbits combined.py. The former executed the

Fortran executables and organized the output files created by these executables whereas

the latter plotted the Fortran output files. A separate Python file, run all.py, was created

to accomplish several tasks. The file reads the dynamic input.data and Static MAST.nml,

extracts all of the necessary information, and stores them as variables. These variables are

then used to calculate the following (figure 14 will be used as a reference) :

FIG. 14: Output Detailing the Detector Height, Toroidal Angle (T.A.), and Radial

Distance

• The distance of each collimator entrance from the center of the tokamak, as shown in

the right most portion of figure 14.

The radial position is measured from the center of the tokamak to the position of

17

collimator entrance that is closest to the plasma; this entrance is used as a reference

for the other entrances.

RDist = RDist coll + ∆coll pos ∗ 1. ∗ 10−3

where RDist coll is the position of the reference collimator and coll pos is the distance

from the reference collimator to each collimator in the system.

• The height of each collimator entrance relative to a central horizontal plane, as shown

in the left most portion of figure 14.

This is calculated through the following equation:

Det height = RP height+ coll height offset ∗ 1. ∗ 10−3

where RP height is the height of the reciprocating probe arm and coll height offset is

the height of each collimator entrance relative to the radial axis of the system.

• The toroidal angle (T.A.) of the collimator entrances , as shown in the right most

portion of figure 14.

This angle dictates where the collimator entrances are positioned within the tokamak.

PHDangle = Probe angle+ arctan(
coll horizontal offset∗1.∗10−3

RDist)

where Probe angle is the toroidal angle of the reciprocating probe and coll horizontal offset

is the horizontal distance of each collimator entrance from the radial axis of the system.

• Update the θ and φ angles of the detectors if the reciprocating probe arm is rotated.

The following steps show how this was calculated:

1. Before the probe arm is rotated, the x,y, and z positions of each detector, denoted

by a vector r̂, is given by

x = −1 ∗ cos(φ) ∗ sin(θ)

y = sin(φ)

z = cos(φ) cos(θ)

18

After a rotation by an angle, α, the new vector, r̂′ is calculated using the rotation

matrix
(1 0 0

0 cos(α) −1∗sin(α)
0 sin(α) cos(α)

)
obtaining

x′ = x

y′ = y ∗ cos(α)− z ∗ sin(α)

z′ = y ∗ sin(α) + z ∗ cos(α)

2. The angle between the vector normal to the x-z plane, n̂, and r̂′ is calculated

using the definition of the dot product which produces

cos(β) = r̂′ · n̂

Since the complimentary angle to β is the new phi angle, φ′, β can be written as

90− φ′. Therefore, cos(β) is equivalent to sin(φ′). The new φ′ is given by

φ′ = arcsin(y′)

3. To find θ′, r̂′ was projected onto the x-z plane by using the matrix
(1 0 0

0 0 0
0 0 1

)
and

the definition of the dot product. Therefore,

θ′ = arccos(~rxz ·ẑ
| ~rxz |

) = arccos(z′√
x′2+z′2

)

• The input value for the reciprocating probe arm controller.

A set point value that determines the distance the collimator entrances will have to the

center of the tokamak must be dialed into the probe arm controller. The value depends

on whether the gas is on or off, a parameter controlled by MAST. The calculations

are

pdo = coll dist− .165

SpGOn = 1200− (2526−RDist ∗ 1000.− pdo ∗ 1000.)

SpGOff = 1200− (2526−RDist ∗ 1000.− 105.4− pdo ∗ 1000)

where coll dist is the distance from the end of the reciprocating probe arm and the

collimator entrance farthest from it.

19

After the above calculations are implemented, all of the parameters are written into

the new .nml file. Finally, the script runs run orbit nml.py, prompts the user to run

plot orbits combined.py, and gives the value to be physically entered to the controller of the

probe arm.

A separate script, setpoint.py, is created to quickly determine where the detectors need to

be repositioned inbetween runs. This script also calculates where the protons intersect the

z = 0 plane within the area of emissivity; it reads the Orbit Code output file on particle

trajectories and searches for radial positions whose corresponding z-position are relatively

close to 0. By calculating the radial positions of protons that intersect the z = 0 plane, the

data taken by the CFPD can be more accurately compared to the data taken by the neutron

camera.

VI. RESULTS

By changing the way values are inputted for the Fortran section and how the python section

is ran, the new structure of the Orbit Code is shown in figure 15.

FIG. 15: Current Structure of the Orbit Code

20

After all of the changes, the new output graphs appear as shown in figure 16.

FIG. 16: Current Output Graph of the Orbit Code

The new graph correctly represents the physical position of the detectors relative to each

other. The lines also have different colors to better differentiate the proton trajectories.

VII. POST EXPERIMENT APPLICATIONS

Along with the ability to calculate the trajectory and model the emissivity of the plasma,

the Orbit Code is also capable of solving for the theoretical rates which should be measured

by the detector. These theoretical rates can be compared emissivity rates obtained through

experimentation to determine what the proper emissivity model should be. This process

will be shown for the data collected from a plasma that had sawtooth instability. Figure 17

shows the particle counts obtained from a sawtooth instability, the name for the instability

comes from the sawtooth pattern seen in the plot.

Using these plots, it is possible to calculate the charged particle rates seen by each detector

at a given moment in time. The Orbit Code is capable of using the emissivity function

inputted in the Static MAST.nml and the calculated trajectories to determine what the

theoretical particles rates are. These two different rates can be compared to determine what

the proper emissivity function is.

21

FIG. 17: Plot of experimental data of counts vs time (s)

For example, emissivity function a, is a simple exponential function that is dependent on a

radial position, r, a height, z, and the emissivity relative to the emissivity at the origin of

the fusion reactions ψrel, given by the Efit file:

S(r, z, ψrel) = αψλrel (a)

α and λ are two constants which need to be determined. The emissivity of equation a, .225

seconds into the plasma shot, is shown in figure 18.

The comparison between the rates produced from function a and the experimental data is

shown in figure 19.

At time .230 seconds, the emissivity profile and rate comparisons are shown in figures 20

and 21.

If a different model, emissivity function b, was used the following graphs would be achieved.

S(r, z, ψrel) = Ae(−(
rr0
σ

)2) (b)

The emissivity of equation b, .225 seconds into the plasma shot, is shown in figure 22.

The comparison between the rates produced from function a and the experimental data is

22

0.8 1.0 1.2
R (m)

0.4

0.2

0.0

0.2

0.4

Z
 (

m
)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
X (m)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Y
 (

m
)

./MAST_efit//g029879.00225.dat

FIG. 18: Emissivity Profile using equation a at time .225 s.

0.85 0.90 0.95 1.00 1.05 1.10
80000

100000

120000

140000

160000

180000

200000

co
u
n
ts

0.0 0.2 0.4 0.6 0.8 1.0
ψrel

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

S
(ψ

re
l)

FIG. 19: Emissivity Profile using equation a at time .225 s. The red points are the

experimental data and the blue points are the theoretical rates.

shown in figure 23.

At time .230 seconds, the emissivity profile and rate comparisons are shown in figures 24

23

0.8 1.0 1.2
R (m)

0.4

0.2

0.0

0.2

0.4

Z
 (

m
)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
X (m)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Y
 (

m
)

./MAST_efit//g029879.00230.dat

FIG. 20: Emissivity Profile using equation a at time .230 s.

0.85 0.90 0.95 1.00 1.05 1.10
60000

65000

70000

75000

80000

85000

90000

95000

co
u
n
ts

0.0 0.2 0.4 0.6 0.8 1.0
ψrel

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

S
(ψ

re
l)

FIG. 21: Emissivity Profile using equation a at time .230 s. The red points are the

experimental data and the blue points are the theoretical rates.

and 25.

By comparing the two models at different times, it is shown that neither are equal to the

experimental rates at all channels at all times however emissivity function b stays within the

accepted error of the experimental rates through both times. Additionally, the times chosen

are the peak and trough of the sawtooth instability, where the experimental and theoretical

24

0.8 1.0 1.2
R (m)

0.4

0.2

0.0

0.2

0.4

Z
 (

m
)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
X (m)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Y
 (

m
)

./MAST_efit//g029879.00225.dat

FIG. 22: Emissivity Profile using equation b at time .225 s.

0.85 0.90 0.95 1.00 1.05 1.10
80000

100000

120000

140000

160000

180000

200000

co
u
n
ts

0.0 0.2 0.4 0.6 0.8 1.0
ψrel

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

S
(ψ

re
l)

FIG. 23: Emissivity Profile using equation b at time .225 s. The red points are the

experimental data and the blue points are the theoretical rates.

rates both show large differences in the emission of charged particle rates.

25

0.8 1.0 1.2
R (m)

0.4

0.2

0.0

0.2

0.4

Z
 (

m
)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
X (m)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Y
 (

m
)

./MAST_efit//g029879.00230.dat

FIG. 24: Emissivity Profile using equation b at time .230 s.

0.85 0.90 0.95 1.00 1.05 1.10
60000

65000

70000

75000

80000

85000

90000

95000

co
u
n
ts

0.0 0.2 0.4 0.6 0.8 1.0
ψrel

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

S
(ψ

re
l)

FIG. 25: Emissivity Profile using equation b at time .230 s. The red points are the

experimental data and the blue points are the theoretical rates.

VIII. CONCLUSION

The modified Orbit Code is an integral part of planning each experimental run for the

charged fusion product diagnostic. Inputting efit files of different times of the same plasma

into the Orbit Code provides an insight into how the plasma behaves over time. This insight

26

allows for a better educated decision of where the detectors need to be positioned in order

to probe as many different sections of the plasmas as possible. These theoretical models

also determine the safest proximities the detectors can have to the plasma. This important

safety feature ensures that the system will remain out of harms way as any damage to the

detector system may also damage the tokamak causing unpredictable consequences. The

code also calculates the set point value for the control box ensuring an accurate position of

the reciprocating probe arm.

For now, the necessary approximations to the Orbit Code have been complete. The geometry

for the collimator shape, such as converting from a square to a circular collimator, does

not need to be changed in the Orbit Code. This is due to the deviation between the

solid angle of acceptances to be less than 1%. In other words, the difference between the

acceptances is small enough for us to accept the acceptance of a square collimator as a proper

approximation. Additionally, no correction factor needs to be included when calculating the

total efficiency of the detectors as the segmentation of the collimator increases. Even though

there was a noticeable drop in efficiency between 1 segment and 9, the deviation between

the efficiencies was less than 1%. Furthermore, the efficiencies seem to be asymptotic with

respect to the number of collimator segments as the difference in efficiency between 121

segments and 625 segments is 0.001 (as shown in Table 2).

27

IX. ACKNOWLEDGEMENTS

I would like to acknowledge Dr. Werner U. Boeglin, Dr. Douglass Darrow, and Mrs. Ramona

Valenzuel Perez for giving me the opportunity and guidance to assist in this project. Scott

Allan and Nigel Thomas-Davies for their tireless effort in aiding the FIU Plasma Physics

Research Group along with the rest of the MAST workforce. Finally, the McNair program

for their support in this endeavor, the undergraduate volunteers could not have made it to

Culham, England without them. Lastly, I’d like to thank Adrianna Angulo, Pierre Avila,

and Carlos Lopez for their help in making the Orbit Code as user friendly and error free as

possible. This material is based upon work supported by the Department of Energy under

Award Number DE-SC0001157.

28

Appendix A: Program to Calculate Solid Angle of Acceptance of a Cylinder

This follow is the code to calculate the solid angle of acceptance of a cylindrical collimator.

The Main Accept program performs the integration of equation 1.

PROGRAM Main_Accept

use acceptancemod

implicit none

INTERFACE

FUNCTION max_theta(r,d)

REAL, INTENT(IN) :: r,d

REAL :: max_theta

END FUNCTION max_theta

FUNCTION cc(theta, d)

REAL, INTENT(IN) :: theta,d

REAL :: cc

END FUNCTION cc

FUNCTION area_overlap(x1,y1,r1,x2,y2,r2)

REAL, INTENT(IN) :: x1,y1,r1,x2,y2,r2

REAL :: area_overlap

END FUNCTION area_overlap

FUNCTION acceptance(zeta)

REAL, INTENT(IN) :: zeta

REAL :: acceptance

END FUNCTION acceptance

FUNCTION acceptancearea(zeta)

29

REAL, INTENT(IN) :: zeta

REAL :: acceptancearea

END FUNCTION acceptancearea

END INTERFACE

real :: s1,s2, angle_max

! Declare local variables

angle_max = max_theta(rs,dm)

call qsimp(acceptancearea, 0., angle_max, S1)

call qsimp(acceptance, 0., angle_max, S2)

write(*,*) ’---’

write(*,*) ’---’

write(*,*) ’---’

write(*,*) ’The acceptance is ’, S1, ’steridians*m^2.’

write(*,*) ’---’

write(*,*) ’---’

write(*,*) ’---’

write(*,*) ’The solid angle of acceptance is ’, S2, ’steridians.’

END PROGRAM Main_Accept

The max theta function calculates the angle at which no particle will enter

the collimator entrance

!---

!--

! Calculates the maxium angle of entry theta.

30

Real Function max_theta(r,d)

implicit none

real, intent(in) :: r,d

max_theta = atan(2.*r/d)

end function max_theta

The cc function calculates the center of the ”shadow” caused the particles entering the

collimator entrance based on the angle between the incoming particles and the collimator.

!--

!--

! Calculates the center x point for the second circle.

real function cc(theta, d)

implicit none

real, intent(in) :: theta, d

cc = d*sin(theta)/cos(theta)

end function cc

The area overlap function calculates the area of overlap between two circles.

REAL FUNCTION area_overlap(x1,y1,r1,x2,y2,r2)

! This function is meant to calculate the area of overlap between two circles.

31

! Using the centers and radii of two circles their amount of overlap is

calculated.

! Declaring the variables

use acceptancemod

implicit none

real, intent(in):: x1,y1,r1,x2,y2,r2

! Determining distace between the centers.

write(*,*) ’The center of a circle is’, [x1,y1],’ with radius’, r1,’.’

write(*,*) ’The center of the other circle is’, [x2,y2], ’with radius’,

r2,’.’

distance = sqrt((x2-x1)**2 + (y2-y1)**2)

write(*,*) ’Distance between the centers is’, distance

! Determining if the circles overlap.

! If the distance between the centers is less than the sum of the radii the

circles intersect or overlap.

if (distance .lt. r1 + r2) then

32

! If the some of one radii and the distance between the centers is less than the

other radii

! then the circles overlap.

if (distance + r1 .le. r2 .or. distance + r2 .le. r1) then

ol = 0.

else

ol = 1.

end if

! If the distance between the centers is greater than the sum of the radii there

is no overlap.

else if (distance .ge. r1 + r2) then

ol = 2.

end if

! Calculating for the area of overlap if ol = 1.

if (ol .eq. 1.) then

! Distance between x coordinates of centers.

dx = abs(x2 - x1)

33

write(*,*) ’The difference between the x coordinates of the center

is’, dx

! Distance between y coordinates of centers.

dy = abs(y2-y1)

write(*,*) ’The difference between the y coordinates of the center

is’, dy

! Center of the area of overlap.

center_ellipse = abs((distance**2 + r1**2 - r2**2)/(2*distance))

write(*,*) ’Center of the ellipse is’, center_ellipse,’from the

center of the circles.’

intersectx(1) = x1 + dx*center_ellipse/distance +

(dy/distance)*sqrt(r1**2 - center_ellipse**2)

intersectx(2) = x1 + dx*center_ellipse/distance -

(dy/distance)*sqrt(r1**2 - center_ellipse**2)

intersecty(1) = y1 + dy*center_ellipse/distance -

(dx/distance)*sqrt(r1**2 - center_ellipse**2)

intersecty(2) = y1 + dy*center_ellipse/distance +

(dx/distance)*sqrt(r1**2 - center_ellipse**2)

write(*,*) ’The points of intersection are (’, intersectx(1),’,’,

34

intersecty(1),’) and (’, intersectx(2),’,’,intersecty(2),’).’

! Calculating the area of intersection

height = sqrt((intersectx(1) - intersectx(2))**2 +(intersecty(2) -

intersecty(1))**2)

write(*,*) ’The height of the ellipse is’, height

! First Circle of the Left

if (x2 .ge. x1) then

! Geometric calculations.

theta = 2.*asin(height/(2*r2)) ! Angle of First Circle’s

Sector

u1 = sqrt(r2**2 - (height/2)**2)

area1 = theta*(r2**2)/2 - u1*height/2 ! Area of First

Circle

if (distance > u1) then

phi = 2*asin(height/(2*r1)) ! Angle of Second

Circle’s Sector

u2 = sqrt(r1**2 - (height/2)**2)

area2 = phi*(r1**2)/2 - u2*height/2 ! Area of

35

Second Circle

else if (distance == u1) then

area2 = 0.5*pi*r1**2 ! Area of Second Circle

else if (distance < u1) then

phi = 2*asin(height/(2*r1)) ! Angle of Second

Circle’s Sector

u2 = sqrt(r1**2 - (height/2)**2)

area2 = (2*pi - phi)*(r1**2)/2 + u2*height/2 ! Area

of Second Circle

end if

area_overlap = area1 + area2

write(*,*) ’When OL=’, ol,’the over lap area

is’,area_overlap

! First Circle on the Right

!

else if (x2 .lt. x1) then

! Geometric calculations.

36

!

theta = 2.*asin(height/(2*r2)) ! Angle of Second Circle’s

Sector

u1 = sqrt(r2**2 - (height/2)**2)

area1 = theta*(r2**2)/2 - u1*height/2 ! Area of Second

Circle

write(*,*) ’Area1 is’, area1

if (distance > u1) then

phi = 2*asin(height/(2*r1)) ! Angle of Second

Circle’s Sector

u2 = sqrt(r1**2 - (height/2)**2)

area2 = phi*(r1**2)/2 - u2*height/2 ! Area of

Second Circle

write(*,*) ’Area2 is’, area2

else if (distance == u1) then

area2 = 0.5*pi*(r1**2) ! Area of Second Circle

else if (distance < u1) then

phi = 2*asin(height/(2*r1)) ! Angle of Second

Circle’s Sector

u2 = sqrt(r1**2 - (height/2)**2)

37

area2 = (2*pi - phi)*(r1**2)/2 + u2*height/2 ! Area

of Second Circle

end if

area_overlap = area1 + area2

write(*,*) ’When OL=’, ol,’the over lap area

is’,area_overlap

end if

! If there is a complete overlap.

else if (ol .eq. 0.) then

if (r1 < r2) then

area_overlap = pi*(r1**2)

write(*,*) ’When OL=’, ol,’the over lap area

is’,area_overlap

else if (r1 >= r2) then

area_overlap = pi*(r2**2)

write(*,*) ’When OL=’, ol,’the over lap area

is’,area_overlap

end if

38

! If there is no overlap.

else if (ol == 2.) then

area_overlap = 0.

write(*,*) ’When OL=’, ol,’the over lap area is’,area_overlap

end if

end function area_overlap

The acceptancearea function provides equation 1 for the program to integrate.

!---

!---

! Calculates the acceptance with the direction of the particles taken into

consideration

real function acceptancearea(zeta)

USE acceptancemod

implicit none

Interface

FUNCTION cc(theta, d)

REAL, INTENT(IN) :: theta,d

REAL :: cc

END FUNCTION cc

39

FUNCTION area_overlap(x1,y1,r1,x2,y2,r2)

REAL, INTENT(IN) :: x1,y1,r1,x2,y2,r2

REAL :: area_overlap

END FUNCTION area_overlap

End Interface

real, intent(in) :: zeta

real :: c2_area

xp = cc(zeta, dm)

ic = area_overlap(x,y,r,xp,yp,rp)

if (xp == 0. .and. rp==r) then

transmission = 1.

else

c1_area = pi*rp**2

transmission = ic/c1_area

end if

c2_area = pi*rp**2

acceptancearea = 2*pi*transmission*c2_area*cos(zeta)*sin(zeta)

end function acceptancearea

The acceptance function is a weighted integral of the solid angle of acceptance of a cylinder.

!---

!---

! Calculates the acceptance

real function acceptance(zeta)

40

USE acceptancemod

implicit none

Interface

FUNCTION cc(theta, d)

REAL, INTENT(IN) :: theta,d

REAL :: cc

END FUNCTION cc

FUNCTION area_overlap(x1,y1,r1,x2,y2,r2)

REAL, INTENT(IN) :: x1,y1,r1,x2,y2,r2

REAL :: area_overlap

END FUNCTION area_overlap

End Interface

real, intent(in) :: zeta

real :: c2_area

xp = cc(zeta, dm)

ic = area_overlap(x,y,r,xp,yp,rp)

if (xp == 0. .and. rp==r) then

transmission = 1.

else

c1_area = pi*rp**2

transmission = ic/c1_area

41

end if

c2_area = pi*rp**2

acceptance = 2*pi*transmission*sin(zeta)

end function acceptance

The makefile combines all of the files into an executable.

#-----Makefile for Soild Angle of Acceptance-------

%.o: %.f

$(F90) -c $(FFLAGS1) $< -o $@

%.o: %.f90

$(F90) -c $(FFLAGS) $< -o $@

Acceptance_OBJ = acceptancemod.o areaoverlap.o maxtheta.o cc.o qsimp.o trapzd.o

MainAccept.o acceptance.o acceptancearea.f90

#INCLUDE = ../include/

F90 = gfortran

#FFLAGS = -ffixed-line-length-none $(FDFLAG) \

-fno-align-commons -w -fno-automatic -I$(INCLUDE)

FFLAGS = -ffree-form

FFLAGS1 =

#--

all: $(Acceptance_OBJ)

42

if (test -f "acceptancemod.mod"); then rm acceptancemod.mod; fi

$(F90) $(Acceptance_OBJ) -o accept

#example of creating object files the long way

#magfld.o: magfld.f

$(F90) -c magfld.f $(FFLAGS) -o $@

#--

clean:

rm *.o *.a *.mod accept testing

#acceptancemodcheck.mod: acceptancemod.f90

if (test -f "acceptancemod.mod"); then rm acceptancemod.mod; fi

$(F90) -c $(FFLAGS) $< -o /temp/xx

#acceptancemod.mod: acceptancemod.f90

$(F90) -c $(FFLAGS) $< -o acceptancemod.o

#area_overlap.o : area_overlap.f90

$(F90) -c $(FFLAGS) $< -o area_overlap.o

#max_theta.o : max_theta.f90

$(F90) -c $(FFLAGS) $< -o max_theta.o

#qsimp.o : qsimp.f

$(F90) -c $(FFLAGS1) $< -o qsimp.o

#trapzd.o : trapzd.f

$(F90) -c $(FFLAGS1) $< -o trapzd.o

43

#acceptance.o : acceptance.f90

$(F90) -c $(FFLAGS) $< -o acceptance.o

#Main_Accept.o : Main_Accept.f90

$(F90) acceptancemod.o area_overlap.o max_theta.o qsimp.o trapzd.o

acceptance.o -c $(FFLAGS) $< -o Main_Accept.o

